Refine your search:     
Report No.
 - 
Search Results: Records 1-5 displayed on this page of 5
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Proceedings of Information and Opinion Exchange Conference on Geoscientific Study, 2019

Nishio, Kazuhisa*; Shimizu, Mayuko; Iyatomi, Yosuke; Hama, Katsuhiro

JAEA-Review 2020-013, 59 Pages, 2020/08

JAEA-Review-2020-013.pdf:19.64MB

The Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA) has been conducting geoscientific study in order to establish a scientific and technological basis for the geological disposal of HLW. Technical information of the result on the geoscientific study conducted at TGC is provided at the annual Information and Opinion Exchange Conference on Geoscientific Study of TGC for exchanging opinions among researchers and engineers from universities, research organizations and private companies. This document compiles the research presentations and posters of the conference in Mizunami on November 20, 2019.

JAEA Reports

Project report on the construction phase at the Mizunami Underground Research Laboratory Project

Nohara, Tsuyoshi; Saegusa, Hiromitsu*; Iwatsuki, Teruki; Hama, Katsuhiro; Matsui, Hiroya; Mikake, Shinichiro; Takeuchi, Ryuji; Onoe, Hironori; Sasao, Eiji

JAEA-Research 2015-026, 98 Pages, 2016/03

JAEA-Research-2015-026.pdf:32.97MB

Tono Geoscience Center (TGC) of Japan Atomic Energy Agency (JAEA) is being performed Mizunami Underground Research Laboratory (MIU) Project, which is a broad scientific study of the deep geological environment as a basis of research and development for geological disposal of nuclear wastes, in order to establish comprehensive techniques for the investigation, analysis and assessment of the deep geological environment in fractured crystalline rock. The MIU Project has three overlapping phases: Surface-based Investigation phase (Phase I), Construction phase (Phase II), and Operation phase (Phase III). The project goals of the MIU Project from Phase I through to Phase III are: (1) to establish techniques for investigation, analysis and assessment of the deep geological environment, and (2) to develop a range of engineering for deep underground application. This report summarizes the results of geoscientific study on Phase II to 500m depth. During Construction phase, we have evaluated of adequacy of techniques for investigation, analysis and assessment of the deep geological environment on Surface-based Investigation phase, and have established systematic methodology for stepwise investigation and evaluation of the geological environment on Construction phase. Further, with respect to design and construction of underground facilities, it was confirmed the validity of the engineering involved in the construction, maintenance and management of underground facilities.

JAEA Reports

Master Plan of the Mizunami Underground Research Laboratory Project

Geoscientific Research Department, Tono Geoscience Center

JAEA-Review 2015-015, 39 Pages, 2015/09

JAEA-Review-2015-015.pdf:28.06MB

In 2014, the JAEA presented the remaining critical issues based on synthesizing R&D results up to date, performed in the approach of whole JAEA reform reflecting the maintenance problems at the fast-breeder reactor "Monju". In this revision, research program of Phase III are restructured based on the critical issues presented in the approach of the whole JAEA reform.

JAEA Reports

Mizunami Underground Research Laboratory Project; Rock mechanical investigations at the -500m stage

Kuwabara, Kazumichi; Sato, Toshinori; Sanada, Hiroyuki; Takayama, Yusuke

JAEA-Research 2015-005, 378 Pages, 2015/07

JAEA-Research-2015-005.pdf:125.5MB
JAEA-Research-2015-005.zip:0.53MB

This report presents the results of following rock mechanical investigations conducted at the -500m Stage. (1) Laboratory tests using cores and block samples obtained at the -500m Stage. (2) In-situ stress measurement using Compact Conical-ended Borehole Overcoring (CCBO) method at the -500m Stage. (3) In-situ stress measurements using Differential Strain Curve Analysis(DSCA) method at the -500m Stage. (4) Development of rock mechanical model.

Oral presentation

Mizunami Underground Research Laboratory Project; A Study on the long-term evolution analysis technology of geological environment characteristics; Development of geological models, and the features of fractures around the Main shaft fault

Nohara, Tsuyoshi; Sakai, Toshihiro; Murakami, Hiroaki; Ishibashi, Masayuki

no journal, , 

It was carried out research on influences of the faults and fractures distribution and geological environment in granitic rocks, in the Mizunami Underground Research Laboratory (MIU) Project. The geological model was updated based on the information of the distributions of lithofacies and geological structures at a depth 500m research galleries, and besides, the validity of the geological model of the site scale developed in the Phase I is confirmed by comparing with the updated model. The relationship between the permeability and fracture filling materials in granitic rocks was examined. As a result, it is confirmed that the water permeability is different by the kind of filling mineral dominant.

5 (Records 1-5 displayed on this page)
  • 1